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In previous papers the convergence of sequences of ``rectangular'' multivariate
Pade� -type approximants was studied. In other publications definitions of
``triangular'' multivariate Pade� -type approximants were given. We extend these
results to the general order definition where the choice of the denominator polyno-
mial is completely free. Also we develop convergence theorems and we distinguish
between results obtained in polydiscs and in multivariate balls. The numerical
examples section illustrates this difference and compares the obtained results
with the approximation power of general order multivariate Pade� approximants.
� 1996 Academic Press, Inc.

1. General Order Multivariate Pade� -Type Approximants

In the past 15 years different definitions were given for the notion of
multivariate Pade� -type approximant. We refer for instance to [Brez79,
Ario87, Kida89, Sabl83, Beno91]. In [AbCu93] a general order definition
was introduced that contained all the previous ones as special cases and
was inspired on the definition of a general order multivariate Pade�
approximant as given in [Cuyt86]. The advantage of using Pade� -type
approximants instead of Pade� approximants is that information on the
poles of the given function can be used in order to obtain better numerical
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behaviour of the approximant. For the paper to be self-contained we briefly
recall the general order multivariate definition.

Without loss of generality we write everything down for the bivariate
case. Let the function f (z) with z=(x, y) # C2 be given by its Taylor series
expansion

f (z)= :
# # N 2

c#z# (1)

where we use the standard multi-index notation

#=(#1 , #2) z#=x#1 y# 2

and let the polynomial containing the pole information of f be given by

q(z)= :
; # D

b;z; b00{0

with D a finite subset of N2. Then it is straightforward that the polynomial
p(z) defined by

p(z)= :
: # N

a:z: N/N2

with

a:= :
; # D

c:&;b;

satisfies

( fq&p)(z)= :
# # N 2"N

e#z# (2)

Here we make use of the convention that c#=0 if #1<0 or #2<0. As
usual in general order multivariate Pade� approximation, we assume that N
satisfies the so-called rectangle rule or inclusion property, meaning that
when an index point belongs to N, then the rectangular subset of index
points emanating from the origin with the given point as its furthermost
corner, is contained in N. This restriction on N is a natural translation of
the univariate accuracy-through-order condition for the remainder series
fq&p. We call the rational function p(z)�q(z) the general order multivariate
Pade� -type approximant to f and denote it by (N�D)f . For more details on
the special cases covered by this general definition we refer to [AbCu93].

For the definition introduced by Brezinski in [Brez79], convergence
results can be found in [OrGo91] and [Dara89] with a new proof of
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Daras' theorem in [Ruda94]. In those papers only rectangular choices for
the index sets N and D are treated, while we now aim at obtaining general
results.

Most other definitions are based on triangular-like choices for N and D
and deal with homogeneous subexpressions in the series expansion of f by
writing

f (z)= :
�

i=0
\ :

|#|=i

c#z#+
where |#|=#1+#2 .

2. Error Formula and Convergence in Polydiscs

Throughout this section we denote by

B(0; r1 , r2)=[z # C2 : |x|<r1 , | y |<r2]

the polydisc with polyradius (r1 , r2) around the origin, and we consider
functions holomorphic in the polydisc and continuous on its boundary.
Then we can use Cauchy's integral formula on the polydisc [Rang86] for
the general order multivariate Pade� -type approximant (N�D)f to obtain

( fq&p)(z)=
1

(2?i)2 :
# # N2 "N

z# |
|u|=r1

|
|v|=r 2

( fq)(w)
u# 1+1v# 2+1 dw (3)

where we write w=(u, v) for a point on the boundary. This representation
together with the fact that N satisfies the inclusion property and hence has
some staircase form as shown in Fig. 1, enables us to obtain a more
detailed error formula for f&(N�D)f .

Let

n1=max[:1 | (:1 , :2) # N]

n2=max[:2 | (:1 , :2) # N]

so that N2"N can be subdivided in several parts like in [AbCu90], namely

V=[(i, j ) | 0�i�n1 , n2+1� j]

H=[(i, j ) | 0�j�n2 , n1+1�i]

M=[(i, j ) | n1+1�i, n2+1� j]

T=[0, n1]_[0, n2]"N.
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Figure 1

Then we treat the remainder series (2) as a sum of four separate contribu-
tions, namely

:
# # H

e#z#= :
�

i=n 1+1

:
n 2

j=0

eijxiyi

=
1

(2?i )2 |
|u|=r1

|
|v|=r2

( fq)(u, v)
(u&x)(v&y)

(x�u)n1+1

_(1&( y�v)n 2+1) du dv

:
# # V

e#z#= :
�

j=n 2+1

:
n1

i=0

eijxiy j

=
1

(2?i )2 |
|u|=r1

|
|v|=r2

( fq)(u, v)
(u&x)(v&y)

(y�v)n 2+1

_(1&(x�u)n1+1) du dv

:
# # M

e#z#= :
�

i=n1+1

:
�

j=n 2+1

eijxi y j

=
1

(2?i )2 |
|u|=r1

|
|v|=r2

( fq)(u, v)
(u&x)(v&y )

(x�u)n1+1 ( y�v)n2+1 du dv

and

:
# # T

e#z#=
1

(2?i )2 :
(i, j ) # [0, n 1]_[0, n 2]"N

xiy j |
|u|=r 1

|
|v|=r2

( fq)(u, v)
ui+1v j+1 du dv
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In this way we obtain an error formula containing only a finite number of
terms analogous to the univariate error formula:

( f&(N�D)f )(z)=
1

(2?i )2 q(z) ||u|=r 1
|

|v|=r2

( fq)(u, v)
(u&x)(v&y)

__\x
u+

n1+1

+\y
v+

n2+1

&\x
u+

n1+1

\y
v+

n2+1

& du dv

+
1

(2?i )2 q(z)
:

(i, j ) # [0, n 1]_[0, n2]"N

xiy j

_|
|u|=r1

|
|v|=r2

( fq)(u, v)
ui+1v j+1 du dv

Furthermore let

sN=max[k | \i, 0�i�k: (i, k&i ) # N]

denote the size of the largest isosceles triangle that can be inscribed in N
with top in (0, 0) and base along the antidiagonal. It is the largest value for
which the index set

SN=[: # N2 | :=(:1 , :2), :1+:2�sN]

is entirely contained in N. For a similar construction see [Cuyt90]. Then
we can prove the following.

Theorem 1. Let f (z) be a function holomorphic on the polydisc
B=B(0; r1 , r2) and continuous on its boundary, and let Nm and Dm be two
sequences of index sets satisfying the following conditions:

(a) lim infm � � sNm=�

(b) the sequence of polynomials qm(z)=�; # D m b;z; is such that there
exist strictly positive constants C1 and C2 for which

sup
|u|=r 1 , |v|=r2

|qm(u, v)|�C1 m=0, 1, 2, ...

inf
(x, y) # B

|qm(x, y )|�C2 m=0, 1, 2, ...

Then the sequence of general order multivariate Pade� -type approximants con-
verges to f uniformly on compact subsets of B. If lim infm � � sNm �m>0 then
the rate of convergence is geometrical.
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Proof. From (3) we have for z=(x, y) # B

|( f&(Nm�Dm)f )(z)|

�C( f ; r1 , r2)
sup|u|=r1 , |v|=r 2

|qm(w)|
inf (x, y) # B |qm(z)|

:
# # N 2"Nm

( |x|�r1)# 1 ( | y|�r2)# 2

Now consider the largest cube CN m that is contained in the index set SN m

with side cNm=wsNm �2x. Then we can write in a fixed compact subset of B

|( f&(Nm�Dm)f )(z)|�C( f ; r1 , r2)
C1

C2

:
# # N 2"C N m

( |x|�r1)# 1 ( | y|�r2)# 2

�C( f ; r1 , r2)
C1

C2

[( |x|�r1)c Nm+(| y|�r2)c N m

&(|x|�r1)cN m ( | y|�r 2)c N m]

Since lim infm � � sNm=� we obtain the uniform convergence of the
sequence (Nm�Dm)f in compact subsets of B. As for the geometrical con-
vergence, if lim infm � � sNm �m=t>0 then we have

lim sup
m � �

|( f&(Nm �Dm)f )(z)| 1�m�max(|x|�r1 , | y|�r2)t�2<1

which completes the proof. K

The conditions on qm(x, y) can be weakened to for instance

lim
m � �

[ sup
|u|=r1 , |v|=r 2

|qm(u, v)|]1�m=1

lim
m � �

[ inf
(x, y ) # B

|qm(x, y)|]1�m=1

and a similar remark applies to the next theorem.

3. Error Formula and Convergence in Balls

In this section we concentrate on functions holomorphic in a ball
B(0, R)=[z # C2 : &z&<R] and continuous on its boundary. The boundary
of the ball is the sphere S(0, R)=[z # C2 : &z&=R]. Cauchy's integral
formula states that for any z # B [Rudi80]

f (z)=C |
S

f (w)
(R2&(z, w) )2 d_(w)
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where (z, w) denotes the usual inner product, the constant C depends only
on the dimension of the space (here the dimension is two because every-
thing is detailed for the bivariate case) and _ is the rotation-invariant
positive Borel measure on S=S(0, R) which can be normalized so that
C=1. The Taylor coefficients c# of f admit the integral representation

c#=
(1+|#| )!

#!
1

R2(2+|#| ) |
S

f (w) w� # d_(w)

where w� is the complex conjugate of w and #!=#1 ! #2 !. From the expres-
sion (2) for the remainder series fq&p we obtain the error formula

( f&(N�D)f )(z)=
1

R4q(z) |S
( fq)(w) :

# # N 2"N

(1+|#| )!
#!

1
R2 |#| z#w� # d_(w) (4)

Theorem 2. Let f (z) be a function holomorphic on the ball B=B(0, R)
and continuous on its boundary, and let Nm and Dm be two sequences of
index sets satisfying the following conditions:

(a) lim infm � � sNm=�

(b) the sequence of polynomials qm(z)=�; # D m
b; z; is such that there

exist strictly positive constants C1 and C2 for which

sup
&w&=R

|qm(w)|�C1 m=0, 1, 2, ...

inf
z # B

|qm(z)|�C2 m=0, 1, 2, ...

Then the sequence of general order multivariate Pade� -type approximants
converges to f uniformly on compact subsets of B. If lim infm � � sN m �m>0
then the rate of convergence is geometrical.

Proof. From (4) we obtain for z # B, with the notations |z|=(|x|, | y | )
and |w|=( |u|, |v| ):

|( f&(Nm�Dm)f )(z)|�
1

R4 |qm(z)| |S
|( fqm)(w)|

_ :
# # N2"N m

(1+|#| )!
#!

1
R2 |#| |z| # |w| # d_(w)
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Since the index set SNm/Nm we can write

|( f&(Nm�Dm)f )(z)|

�
1

R4 |qm(z)| |S
|( fqm)(w)| :

# # N 2"SN m

(1+|#| )!
#!

1
R2 |#| |z| # |w| # d_(w)

�C( f, R)
C1

|qm(z)|
max
w # S

:
�

i=sN m+1

:
|#|=i

(1+|#| )!
#!

1
R2 |#| |z| # |w| #

=C( f, R)
C1

|qm(z)|
max
w # S _

(( |z|, |w|)�R2)s N m+2

(1&( |z|, |w|)�R2)2

+(sN m+2)
(( |z|, |w|)�R2)sN m+1

(1&( |z|, |w|)�R2) &
By the inequality of Cauchy�Schwarz we have

|( |z|, |w|) |�&z& } &w&=R &z&

and consequently for z in a fixed compact subset of B

|( f&(Nm�Dm)f )(z)|�
C1 C( f, R)

C2 _(&z&�R)sN m+2

(1&&z&�R)2 +(sN m+2)
(&z&�R)s Nm+1

(1&&z&�R) &
which finishes the proof. If lim infm � � sNm �m=t>0 then

lim sup
m � �

|( f&(Nm �Dm)f )(z)| 1�m�(&z&�R)t<1

and the rate of convergence is geometrical. K

4. Discussion of Special Cases

4.1. Polydiscs

A first special case is again the definition in [Brez79] where N and D are
chosen to be rectangles. In this case the index set T is empty and the error
formula simplifies to

( f&(N�D)f )(z)=
1

(2?i )2 q(z) ||u|=r 1
|

|v|=r2

( fq)(u, v)
(u&x)(v&y)

__\x
u+

n1+1

+\y
v+

n2+1

&\x
u+

n1+1

\y
v+

n2+1

& du dv
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When the set N is triangular as in [Ario87], the set T is also triangular
and the theorem proves the convergence for appropriate sequences qm(z).
When the set N is band-structured as in [Kida89], the condition for qm(z)
to be bounded away from zero in the polydisc and its boundary should be
replaced by a similar condition on the polydisc excluding a thin set of
zeros. The convergence results then also apply to the polydisc excluding
that thin set.

In any case it is not difficult to construct sequences qm(z) that satisfy the
conditions of the theorem. Consider for instance

q (1)
m (z)=\m

1 pm
2 &xmym \i>ri

or

q (2)
m (z)=( \m

1 &xm)( \m
2 &ym) \i>ri

For the band-structured choice the q (i )
m (z) can be multiplied by a suitable

x+ y+.

4.2. Balls in Multivariate Space

The simplest case to which theorem 2 applies is the homogeneous
approach with Nm=SNm . In this case the error formula (4) takes a simpler
form. Indeed,

( fq&p)(z)=
1

R4 |
S

( fq)(w) :
�

i=s N m+1
_ :

|#|=i

(1+|#| )!
#!

1
R2 |#| z#w� #& d_(w)

Taking into account the fact that

:
|#|=i

(1+|#| )!
#!

1
R2 |#| z#w� #=(i+1) \(z, w)

R2 +
i

one obtains

( fq&p)(z)=
1

R4 |
S

( fq)(w) _ :
�

i=s N m+1

(i+1) \(z, w)
R2 +

i

& d_(w)

and the proof is more straightforward.
Choices for denominators qm(z) satisfying the conditions of theorem 2

are for instance

q (1)
m (z)=R2m&(x2+y2)m

or

q (2)
m (z)=R2m&(xy)m
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5. Numerical Illustration

5.1. Polydiscs

Let us consider the function

f (x, y)=
exp(xy)

(1&x)(1&y)

which is holomorphic in polydiscs around 0 with polyradius (r1 , r2)
componentwise less than 1. Our choice for the index sets Nm and the poly-
nomials qm is the following:

m�10 qm(z)=(1&xm)(1&ym)

Dm=[(0, 0), (m, 0), (0, m), (m, m)]

Nm=[0, m&9]_[0, m&1] _ [m&8, m&7]_[0, m&4]

_ [m&6, m&4]_[0, m&7] _ [m&3, m&1]_[0, m&9]

We display the value of the approximant (Nm�Dm)f and the expression

=m=|( f&(Nm �Dm)f )(x, y)| 1�m

which converges towards

max( |x|�r1 , | y |�r2)

in the points zI=(0.3, &0.4) and zII=(0.85, 0.85) and we compare the
value of the general order multivariate Pade� -type approximant with that of
the general order multivariate Pade� approximant [Nm�D1]f as computed
in [Cuyt87]. The extra conditions necessary for the computation of the
denominator in the Pade� case (because now it cannot be fixed in advance)
are chosen to be

( fq1&pm)(z)= :
(i, j ) # N 2"Im

dijxiy j

Im=Nm _ [(m, 0), (m&6, m&6), (0, m)]

For the sake of completeness we also compare with the partial sum

[Im�D0] f= :
(i, j ) # I m

cijxiy j

(Tables I and II).
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TABLE I

(x, y)=(0.3, &0.4) f (x, y)=0.9050208537930180...

m [Im �D0]f (Nm�Dm)f =m [Nm�D1]f

10 0.9052747627000001 0.9047026067623132 0.447 0.9050177140738382
14 0.9050199196685386 0.9050195432833030 0.380 0.9050208538026430
20 0.9050208496545943 0.9050208486066260 0.385 0.9050208537945944
25 0.9050208538355379 0.9050208538462221 0.388 0.9050208536565296
30 0.9050208537925841 0.9050208537924730 0.390
35 0.9050208537930243 0.9050208537930243 0.393

5.2. Multivariate Balls

Let us take the function

f (x, y)=
exp(xy )

1&(x2+y2)

which is holomorphic in the ball centered at 0 with radius 1. We now con-
sider a more homogeneous approach and choose Nm and qm as follows:

m�5 qm(z)=1&(x2+y2)m

Dm=[(0, 0)] _ [(2k, 2m&k) | 0�k�m]

Nm=[(i, j ) | 0�i+j�2m&1]

We display the value of the approximant (Nm�Dm)f and the expression

=m=|( f&(Nm �Dm)f )(x, y)| 1�2m

which converges towards &z&, in the points zI=(0.3, &0.4) and zII=
(0.6, &0.6) and now compare with the homogeneous Pade� approximants

TABLE II

(x, y)=(0.85, 0.85) f (x, y)=91.53669862789831...

m [Im �D0]f (Nm�Dm)f =m [Nm�D1]f

10 37.97794294950821 57.12494023598670 1.42 156.8244449193780
20 83.03637933882605 89.75287359137341 1.03 91.53669862928274
30 89.94496019720368 91.31690334150360 0.951 91.53669862789741
40 91.22649493028024 91.49815628366130 0.922 91.53669862793585
50 91.47575028314775 91.52929133557080 0.907
60 91.52470421940957 91.53524730610090 0.897
70 91.53433742039013 91.53641317034410 0.890
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TABLE III

(x, y)=(0.3, &0.4) f (x, y)=1.18256058228954... &zI &=0.5

m | f&[2m, 0]f | | f&(Nm�Dm)f | =m | f&[2m&1, 1]f |

5 0.201E&03 0.349E&03 0.451 0.806E&03
8 0.315E&05 0.546E&05 0.469 0.126E&04

13 0.307E&08 0.533E&08 0.481 0.123E&07
16 0.480E&10 0.832E&10 0.484 0.192E&09
20 0.187E&12 0.325E&12 0.487 0.750E&12
23 0.244E&14 0.527E&14 0.489 0.113E&13

[2m&1, 1]f that can be computed using the multivariate =-algorithm as
detailed in [Cuyt82]. Input for the multivariate =-algorithm are the Taylor
series coefficients cij of f with 0�i+j�2m. The choices for m, zI and zII

are such that the number of coefficients to be determined in the approxi-
mant and the position of the points with respect to the boundary, respec-
tively of the poly-disc and the unit ball, are comparable. Again for the sake
of completeness we also compare with the partial sum

[2m, 0]f= :
0�i+j�2m

cijxiy j

(Tables III and IV).
For the entries that were not filled in Tables I�IV, the rounding error

became larger than the truncation error. It is clear from the two tables
above that near a singularity the use of a series is restricted and the use of
a rational function is recommended. For multivariate Pade� approximants
a convergence theorem was proved in [Cuyt90] which applies when
approximating a meromorphic function as is the case here.

TABLE IV

(x, y)=(0.6, &0.6) f (x, y)=2.49170116453939... &zII&=0.8485281

m | f&[2m, 0]f | | f&(Nm�Dm)f | =m | f&[2m&1, 1]f |

5 0.302E+00 0.781E&01 0.775 0.419E+00
13 0.218E&01 0.461E&02 0.813 0.303E&01
20 0.219E&02 0.457E&03 0.825 0.304E&02
35 0.158E&04 0.331E&05 0.835 0.220E&04
50 0.115E&06 0.239E&07 0.839 0.159E&06
70 0.336E&10 0.842 0.223E&09
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